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Abstract

In this paper we investigate the work-conjugacy between rotation-dependent moments and finite rotation measures.

The methodology adopted consists of writing all the relevant quantities in terms of the rotation vector, using ex-

pressions that remain exact in the finite rotation range. Through this procedure, we show how (i) to identify work-

conjugate (rotation-dependent) moments and rotation measures, (ii) to derive a necessary condition for moment

conservativeness and (iii) to obtain the general form of an isotropic conservative rotation-dependent moment. Several

moment and finite rotation definitions that have been used in the past are investigated and, in particular, it is shown

that the various existing definitions for the so-called semi-tangential moments are distinct in the finite rotation range

and that not all of them are conservative. The tangent operator symmetry is discussed in the context of finite element

analysis of conservative systems with rotational degrees of freedom, adopting either an additive or a multiplicative

update.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Conservative moments and commutative rotations

It is well known that a constant applied moment, the so-called axial moment, is not conservative (Ziegler,

1968). However, this does not mean that conservative applied moments do not exist. Instead, it simply

means that a conservative moment must be rotation-dependent.

It is also well known that rotations about fixed axes are non-commutative. As a consequence, spatial
finite elements having such rotations as degrees of freedom lead to non-symmetrical tangent stiffness

matrices, even for conservative loadings (Argyris et al., 1978). However, it is possible to describe finite
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rotations in such a way that the composition of successive rotations is additive or, at least, exhibits some

kind of commutativity.

Although Ziegler (1968) and Argyris and co-workers (Argyris et al., 1978, 1979a; Argyris, 1982) have

done much to clarify these issues, most of their work took place in the context of second-order approxi-
mations (i.e. including up to linear terms in the moment rotation-dependency) and, thus, they did not

explore the finite rotation range thoroughly. The aim of the present paper is to investigate and characterize,

in the finite rotation range, several (i) rotation-dependent moments and (ii) rotation descriptions considered

in the past.

1.2. Ziegler’s definitions of conservative moments

Ziegler (1968) conceived three types of conservative moments, namely quasi-tangential, semi-tangential

and pseudo-tangential moments. All these moments can be generated by simple mechanisms involving

conservative forces applied either through strings wrapped around disks or directly at the end points of

rigid levers (see Fig. 1).

Ziegler�s semi-tangential moment is generated when any number n > 2 of forces of equal magnitude are
uniformly distributed around a disk positioned perpendicularly to the initial moment axis (Ziegler, 1968).

The semi-tangential concept is most appealing because the knowledge of the force directions is not required,

which means that the semi-tangential moment is completely defined by its initial vector (obviously, the

current rotation must also be known) (Argyris et al., 1978, 1979a).

On the other hand, Ziegler�s quasi-tangential moment is generated by only two forces (Ziegler, 1968), but

its complete definition requires two directions (e.g. the disk axis and generating force directions).

In his book, Ziegler (1968) did not explore the implications of these conservative moment definitions in

the large rotation range. We remark that his disk and string based definitions are not easily generalizable to
large rotations when the disk axis leans towards the strings direction. Moreover, it is not clear whether a

holonomic kinematical condition can be established between the disk and the strings. We point out that, if

the kinematical condition is non-holonomic, the resulting moment can be non-conservative, even though

the forces themselves remain conservative (Lanczos, 1970).

Ziegler (1968) has also introduced the more convenient pseudo-tangential conservative moment, stem-

ming from forces applied at the ends of a cross-bar (lever), instead of being tangent to a disk. Although

Ziegler considered only one cross-bar to define the pseudo-tangential moment, the concept can be extended

to two cross-bars, leading to a moment designated here as cross semi-tangential moment (see Fig. 1). Like

quasi-tangential semi-tangential

pseudo-tangential cross semi-tangential

Fig. 1. Four examples of conservative moments.
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the (disk based) semi-tangential moment, it depends only on its initial vector, i.e. it is insensitive to the

initial lever orientation. Although the two definitions are closely related, they differ in the second-order

terms. For instance, when rotations parallel to the initial moment axis are considered, (i) Ziegler�s semi-

tangential moment remains always unaltered, while (ii) the cross semi-tangential moment becomes null for
a 90� rotation. Since Ziegler�s semi-tangential moment definition is less sound in the finite rotation range,

both from mathematical and physical points of view, it will not be further considered in this work.

1.3. Argyris semi-tangential definitions

Subsequently, Argyris et al. (1978) preferred to use levers, instead of Ziegler�s disk, to redefine the semi-

tangential moments, which means that they effectively dealt with the above defined cross-tangential mo-

ment.

In order to avoid obtaining unsymmetrical tangent matrices in conservative problems, Argyris and co-

workers introduced a new rotation definition––the so-called semi-tangential rotations (Argyris et al., 1978,

1979a). Such rotations were, supposedly, work-conjugate to the (cross) semi-tangential moment. Unfor-

tunately, since most of the reasoning was made in the context of small rotations, they presented several

semi-tangential moment and rotation definitions which turn out to be clearly distinct in the finite rotation
range.

In the course of this paper, we will distinguish between four different kinds of moments and rotations, all

corresponding to Argyris semi-tangential concept, namely:

ii(i) the cross semi-tangential moment, corresponding to the lever mechanism;

i(ii) the mean semi-tangential moment, which is the mean value of the axial and follower moments;

(iii) the commutative semi-tangential rotation, based on a commutative rule for the rotations;

(iv) the half semi-tangential rotation, based on the decomposition of the rotation into two successive equal
half-rotations.

For each moment definition, there is a work-conjugate rotation definition and vice versa. So, Argyris semi-

tangential concept comprises, in reality, four different definitions.

1.4. The internal moment nature controversy

In the context of the (variationally based) finite element method, the out-of-balance load vector is work-

conjugate to the degrees of freedom. This means that, when semi-tangential rotations are used as rotational

degrees of freedom, the corresponding equilibrium equations involve semi-tangential moments (Argyris

et al., 1978). Since the load vector is often expressed as the difference between internal and external loads, the

issue of which is the internal moment nature was raised and has became the source of a lot of controversy.

Argyris et al. (1979b) and Yang and McGuire (1986a,b) identified bending moments and Saint Venant

torques as being quasi-tangential and semi-tangential, respectively. These authors also recognized that,
adopting such definitions for the internal moment behavior, an apparent loss of equilibrium occurs when an

(initially equilibrated) joint is subjected to a finite rotation (Argyris et al., 1978, 1979b; Yang and McGuire,

1986a,b). This inconsistency led them to assume a semi-tangential behavior for all internal moments, in

spite of the fact that bending moments seemed to be quasi-tangential. Yang and Kuo (1994), on the other

hand, found that the internal moment semi-tangential assumption was unnecessary to derive the tangent

stiffness matrix.

Another approach was adopted by Teh and Clarke (1997), who argued that internal moments should be

viewed as follower moments (or �moments of the fourth kind�, which is just a second-order approximation
of follower moments). This assertion led them to claim later that �the proper consideration of the rotational
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behavior of nodal moments invariably leads to asymmetric tangent stiffness matrices for spatial beams�
(Teh and Clarke, 1999).

Saleeb et al. (1992, p. 489) began to shed light on this subject by first recognizing that the semi-tangential

internal moment behavior was a direct consequence of the kinematic description, and not an intrinsic
property. Indeed, as recently pointed out by Izzuddin (2001), (i) internal moments perform work over

curvature and twist strains, (ii) element end moments perform work over nodal rotations, (iii) any element

end moment definition can be adopted without compromising accuracy and (iv) the adopted nodal moment

definition should simply be the one which is work-conjugate to the chosen nodal rotation definition. We

remark that several other authors (Simo and Vu-Quoc, 1986; Cardona and Geradin, 1988; Ibrahimbegovi�cc
et al., 1995; Ritto-Corrêea and Camotim, 2002), who never made an issue out of the internal moment nature,

have used precisely work-conjugate nodal end moment and rotation definitions (in the formulation of

geometrically exact beam models).

1.5. Paper outline

According to Euler�s theorem, the general displacement of a rigid body with a fixed point is a rotation

about some axis (Goldstein, 1980). Therefore, finite rotations can be represented by vectors having the axis

direction and a magnitude describing the rotated angle. There are several possibilities ensuring a 1:1 cor-

respondence between vectors and rotation orthogonal tensors, which hold in a finite domain. In the present

paper, the rotation vector h will be adopted and, hence, all rotation related quantities will be expressed as a

function of either h or its differential dh.
After introducing basic finite rotation concepts, the paper investigates rotation-dependent moments in

the finite rotation range. Two main issues are dealt with:

i(i) When is a rotation-dependent moment conservative?

(ii) In a conservative system with rotational degrees of freedom, when is the tangent operator symmetric?

Concerning the first question, after presenting a general theory based on the work-conjugacy between

rotation-dependent moments and rotation measures, we establish (i) a necessary condition for a rotation-
dependent moment to be conservative and (ii) the general form for conservative isotropic moment-rotation

laws. Next, several particular rotation-dependent moment and rotation definitions are investigated, com-

pared and characterized.

To answer the second question, we need to distinguish between additive and multiplicative updates of the

rotation description. While the former always lead to symmetric tangent operators, the latter require the

satisfaction of an additional condition, which is termed here as the semi-tangential property.

2. Basics of finite rotations

2.1. Rodrigues formula and the rotation vector

Finite rotations can be represented by an orthogonal tensor K, an element of the rotation group

SOð3Þ ¼ fK : R3 ! R3 linear jKKt ¼ 1 ^ detðKÞ ¼ 1g

This tensor can be parameterized by the rotation vector h, which is a vector aligned with the rotation axis

and having a magnitude equal to the rotated angle h. Rodrigues formula establishes the relation between h

and K (e.g., see Goldstein, 1980, p. 164, or Crisfield, 1997, p. 191)
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K ¼ 1þ sin h
h

~hh þ 1
 cos h

h2
~hh2 ¼ cos h1þ sin h

h
~hh þ 1
 cos h

h2
h � h ð1Þ

where ~hh denotes the skew-symmetric second-order tensor for which h is the axial vector, meaning that

~hhv ¼ h � v 8v 2 R3 ð2Þ

We state here the following standard vector identities, which will be needed later:

~yy~xx ¼ x� y
 ðx:yÞ1 ð3Þ

gð~xxyÞð~xxyÞ ¼ ~xx~yy
 ~yy~xx ð4Þ

2.2. Infinitesimal rotations and the spin

An expression for an infinitesimal rotation is obtained by considering only the linear terms in (1),

yielding

K� ¼ 1þ fdxdx ð5Þ

where dx is the infinitesimal rotation vector known as the spatial spin. If an infinitesimal rotation K� is

performed after a finite rotation K, the resulting rotation tensor is obtained by the multiplicative update

K þ dK ¼ K�K ¼ K þ fdxdxK ð6Þ

This means that

dK ¼ fdxdxK ð7Þ

It can be shown (Ritto-Corrêea and Camotim, 2002) that the axial vector dx of the skew-symmetric tensorfdxdx is given by

dx ¼ T dh ð8Þ

where

T ¼ 1þ 1
 cos h

h2
~hh þ h 
 sin h

h3
~hh2 ð9Þ

The inverse of T reads (see, e.g., Ibrahimbegovi�cc et al., 1995)

T
1 ¼ 1
 1

2
~hh þ 1

h2
1

�

 ð1þ cos hÞh

2 sin h

�
~hh2 ð10Þ

an expression that breaks down for h ¼ 2p.

2.3. The work performed by a moment

Upon an infinitesimal rotation dx, a moment M performs the infinitesimal work

dW ¼ M � dx ð11Þ

It is well known that the spin dx is not a total differential, which means that there exists no �x� from which

dx can be derived. Defining the axial moment Mx as a moment with fixed spatial components, it becomes
obvious that the infinitesimal work dW ¼ Mx � dx is not a total differential either.
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3. General theory of rotation-dependent moments

3.1. Work-conjugacy

A rotation-dependent moment can be written in the general form

M ¼ QaMa ð12Þ
where Ma is a constant vector defining the initial moment (the moment that acts when no rotation is

present), M is the current value of the moment and Qa ¼ QaðKÞ is a rotation-dependent second-order

tensor that establishes the moment-rotation law, i.e. describes how the moment depends on the rotation.

We next consider a more general form of (11) and say that a moment Ma is work-conjugate to an in-
finitesimal rotation da if the work performed by the moment is

dW ¼ Ma � da ð13Þ
where the infinitesimal rotation da may or may not be a total differential.

It is important to clarify that, at this stage, we do not specify neither how the vector da describes an

infinitesimal rotation, nor the meaning of the moment Ma. By proceeding in this way, we aim at estab-

lishing general expressions, which will be particularized later.
Let us assume that da is a total differential and that vector Ma is constant. Then, there exists a moment

potential V ðaÞ such that

dW ¼ 
dV ðaÞ with V ðaÞ ¼ 
Ma � a ð14Þ
where a is a vector defining the rotation (in an yet unprescribed way). Therefore, Ma can be derived from

V ðaÞ,

Ma ¼ 
 dV ðaÞ
da

ð15Þ

and the work performed by moment M ¼ QaMa, when the rotation measure a varies between a1 and a2, is

W ¼
Z 2

1

dW ¼ 
ðV ða2Þ 
 V ða1ÞÞ ð16Þ

which implies that the moment generated by Ma and the by moment-rotation law Qa is conservative. Using

an abbreviated language to which we will resort often, we may say, alternatively, �moment Ma is conser-

vative�.

3.2. The rotation measures a and da

Let us consider a to be related to the rotation vector h by

a ¼ aðhÞ ð17Þ

where we assume that aðhÞ establishes a 1:1 correspondence between h and a, holding for a certain domain
of h. Differentiating (17), we obtain

da ¼ Sa dh ð18Þ

where Sa is a second tensor given by

Sa ¼
daðhÞ
dh

ð19Þ
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We remark that, although it may be impossible to write an expression like (17) for a given rotation defi-

nition, expression (18) is quite general. In particular, the da appearing in Eq. (18) is not required to be a

total differential.

Taking into account Eqs. (11)–(13), we can write

dW ¼ M � dx ¼ QaMa � dx ¼ Ma �Qt
a dx ¼ Ma � da ð20Þ

which shows that

da ¼ Qt
a dx ð21Þ

Observe that the meaning of a or da can be apprehended from (17) or (21), respectively, for vector-like or

spin-like rotation descriptions.

Furthermore, from Eqs. (18), (21) and (8), we obtain the relationship

Sa ¼ Qt
aT ð22Þ

3.3. A necessary condition for conservativeness

Assume that Ma is a conservative moment derived from a potential V ðaÞ, as discussed in Section 3.1.

Because we also assume a 1:1 correspondence between a and h, this potential can be rewritten as

V ðaÞ ¼ V ðaðhÞÞ ¼ VaðhÞ ð23Þ

Since the order in which two successive directional derivatives are performed is arbitrary, we have

D2VaðhÞ½dh1; dh2� ¼ D2VaðhÞ½dh2; dh1� ¼ dh2 � Ka dh1 ð24Þ

where Ka must be a symmetric second-order tensor.

To explicitly determine Ka, we first use Eqs. (14) and (18) to yield

DVaðhÞ½dh1� ¼ 
Ma � Sa dh1 ð25Þ

Next, it is convenient to define an operator NDUðuÞ, associated with the directional derivative of a second-
order tensor U, through the relation

DU ½dh�u ¼ NDUðuÞdh ð26Þ

Taking into account that Ma is a constant vector, the second directional derivative of VaðhÞ is then given by

D2VaðhÞ½dh1; dh2� ¼ 
Ma � ðDSa½dh2�Þdh1 ¼ 
ðDSt
a½dh2�ÞMa � dh1 ¼ 
NDSt

a
ðMaÞdh2 � dh1

¼ 
dh2 � Nt
DSt

a
ðMaÞdh1 ð27Þ

Finally, comparing (24) with (27), one finds that

Ka ¼ 
Nt
DSt

a
ðMaÞ ð28Þ

Hence, it follows that a necessary condition for a moment Ma to be conservative is the symmetry of

Nt
DSt

a
ðMaÞ. See Christoffersen (1989) and Saleeb et al. (1992) for other approaches to establish equivalent

necessary conditions.

3.4. A class of problems––isotropic moment-rotation laws

Assume now that the moment-rotation law Qa is an isotropic (tensor) function of K, which means that

the invariance requirement
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RQaðKÞRt ¼ QaðRKRtÞ ð29Þ
holds, whereR is an arbitrary proper orthogonal tensor. Since K is itself an isotropic function of ~hh, a fact that
follows easily from Eq. (1), then Qa must be an isotropic function of the skew-symmetric tensor ~hh. Repre-

sentations for the symmetric and skew-symmetric parts of Qa can be found in Wang (1970), leading to 1

Qa ¼ q0ðhÞ1þ q1ðhÞ~hh þ q2ðhÞ~hh2 ¼ �qq0ðhÞ1þ q1ðhÞ~hh þ q2ðhÞh � h ð30Þ
with �qq0ðhÞ ¼ q0ðhÞ 
 h2q2ðhÞ.

Introducing (30) into Eq. (22), we find that

Sa ¼ s0ðhÞ1þ s1ðhÞ~hh þ s2ðhÞ~hh2 ¼ �ss0ðhÞ1þ s1ðhÞ~hh þ s2ðhÞh � h ð31Þ
where �ss0ðhÞ ¼ s0ðhÞ 
 h2s2ðhÞ and

s0ðhÞ ¼ q0ðhÞ

s1ðhÞ ¼
1
 cos h

h2
q0ðhÞ 


sin h
h

q1ðhÞ 
 ð1
 cos hÞq2ðhÞ

s2ðhÞ ¼
h 
 sin h

h3
q0ðhÞ 


1
 cos h

h2
q1ðhÞ þ

sin h
h

q2ðhÞ

ð32Þ

On the other hand, Qa can be obtained from Sa using the inverse relationships

q0ðhÞ ¼ s0ðhÞ

q1ðhÞ ¼
1

2
s0ðhÞ 


ð1þ cos hÞh
2 sin h

s1ðhÞ 

h2

2
s2ðhÞ

q2ðhÞ ¼
1

h2
1

�

 ð1þ cos hÞh

2 sin h

�
s0ðhÞ 


1

2
s1ðhÞ þ

ð1þ cos hÞh
2 sin h

s2ðhÞ

ð33Þ

Observing that the directional derivative of h is given by

h2 ¼ h � h ) 2hdh ¼ h � dh þ dh � h ) dh ¼ h � dh

h
ð34Þ

the transpose of the directional derivative of Eq. (31) is

DSt
a½dh� ¼ 
s1ðhÞd~hh þ s2ðhÞðdh � h þ h � dhÞ þ ðh � dhÞ �ss00ðhÞ

h
1

 

 s01ðhÞ

h
~hh þ s02ðhÞ

h
h � h

!
ð35Þ

and its associate tensor reads (see also Ritto-Corrêea and Camotim, 2002)

NDSt
a
ðMaÞ ¼ s1ðhÞ ~MMa þ s2ðhÞðh �MaÞ1þ s2ðhÞh �Ma þ

�ss00ðhÞ
h

Ma � h 
 s01ðhÞ
h

ð~hhMa � hÞ

þ s02ðhÞ
h

ðh �MaÞh � h ð36Þ

Therefore, we have

Nt
DSt

a
ðMaÞ ¼ s2ðhÞðh �MaÞ1þ s2ðhÞMa � h þ �ss00ðhÞ

h
h �Ma þ

s02ðhÞ
h

ðh �MaÞh � h 
 s1ðhÞ ~MMa


 s01ðhÞ
h

ðh � ~hhMaÞ ð37Þ

1 We acknowledge the contribution of Prof. H. Xiao, who kindly helped us to properly derive the Qa representation.

2858 M. Ritto-Corrêea, D. Camotim / International Journal of Solids and Structures 40 (2003) 2851–2873



which, for arbitrary Ma and h vectors, is a symmetric expression only if the two following conditions hold:

s2ðhÞ ¼
�ss00ðhÞ

h
s1ðhÞ ¼ 0 ð38Þ

From the result obtained in Section 3.3, we infer that, if Qa is such that conditions (38) do not hold, the

associated moment Ma is not conservative.

On the other hand, if conditions (38) do hold, it is easy to find a relationship between a and h, which has

the form

aðhÞ ¼ �ss0ðhÞh ð39Þ
In fact, the differentiation of this expression yields

da ¼ �ss0ðhÞdh þ �ss00ðhÞ
h

ðh � dhÞh ¼ �ss0ðhÞ1
 

þ �ss00ðhÞ
h

h � h

!
dh ð40Þ

which, in face of (18), shows that

Sa ¼ �ss0ðhÞ1þ
�ss00ðhÞ

h
h � h ð41Þ

This expression has the form of (31) and satisfies the conditions (38).
Hence, for an isotropic moment-rotation law, (38) are both necessary and sufficient conditions for Ma to

be conservative. Moreover, the infinitesimal rotation da is a total differential and the explicit relation be-

tween a and h is of the form (39).

Finally, introducing the conservativeness conditions (38) into Eqs. (33), we obtain the general expression

for an isotropic moment-rotation law

Qa ¼ ð�ss0ðhÞ þ h�ss00ðhÞÞ1þ
�ss0ðhÞ
2

~hh þ 1

h2
�ss0ðhÞ
�


 ð1þ cos hÞh
2 sin h

�ss0ðhÞ þ h�ss00ðhÞ
�
~hh2 ð42Þ

where only the exact definition of the scalar function �ss0ðhÞ is left open. This expression can also be written

as

Qa ¼
ð1þ cos hÞh

2 sin h
�ss0ðhÞ1þ

�ss0ðhÞ
2

~hh þ 1

h2
�ss0ðhÞ
�


 ð1þ cos hÞh
2 sin h

�ss0ðhÞ þ h�ss00ðhÞ
�

h � h ð43Þ

3.5. First-order expressions and the semi-tangential property

Argyris et al. (1979a) were primarily concerned with the linear terms of the moment-rotation law, as can

be understood from the following quote:

Our task is to investigate the changes occurring in the moments when the rigid levers used for the gen-

eration of the moments are subject to rotations. It suffices in doing so to consider only small rotations
since the resulting linear terms of the changes determine the second-order terms of the total potential

energy of the finite elements required for the derivation of the tangent stiffness. (Argyris et al., 1979a,

p. 36)

Let us assume Ma to be a rotation-dependent moment which is both conservative and isotropic. Observe

first that, since M ¼ Ma for h ¼ 0, q0ð0Þ ¼ �qq0ð0Þ ¼ 1, which implies that (see Eq. (32))

s0ð0Þ ¼ �ss0ð0Þ ¼ 1 ð44Þ
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Secondly, observe that the conservative conditions (38) imply that, for h ¼ 0, one has

�ss00ð0Þ ¼ 0 s1ð0Þ ¼ 0 ð45Þ

Hence, from (31) and (42) one finds that, for a conservative moment-rotation law, the first-order ap-

proximations of Sa and Qa are given by

Sa ¼ 1þOðh2Þ ð46Þ

Qa ¼ 1þ 1
2
~hh þOðh2Þ ð47Þ

Since the Qa expression coincides with the first-order approximations of Ziegler and Argyris semi-tangential

moment definitions, we will characterize all the moment rotation-laws sharing the first-order approxima-

tion (47) as having the semi-tangential property. Similarly, all the infinitesimal rotational measures da
sharing the first-order approximation (46) will also be designated as semi-tangential.

4. A study of particular cases

In this section, we address and discuss several possible kinds of moments and rotations. In particular, the

general formulae developed in the previous section are used to establish work-conjugate pairs. One deals
mainly with isotropic moment-rotation laws, so as to be able to use the results obtained in Section 3.4, but

the anisotropic Ziegler�s pseudo-tangential moment is also considered. On the other hand, Ziegler�s semi-

tangential and quasi-tangential moments (Ziegler, 1968) are not dealt with, due to the difficulties in es-

tablishing their moment-rotation law in the finite rotation range, as already mentioned in the introduction.

4.1. The rotation vector and the rotational moment

Let us start with the simplest case, in which we have a ¼ h, i.e. a is the rotation vector. Then it trivially

follows that

Sh ¼ 1 Qh ¼ T
t ð48Þ

Thus, an applied moment M ¼ T
tMh, where Mh is a constant vector, is conservative. In Ritto-Corrêea and

Camotim (2002), we have designated Mh as the rotational moment.

4.2. The spatial spin and the axial moment

The simplest spin-like rotation description is the spatial spin, in which the individual rotation axes are

fixed in space and the composition of two successive rotations is given by K2�1 ¼ K2K1. In this case,

da ¼ dx and we have

Sx ¼ T Qx ¼ T
tT t ¼ 1 ð49Þ

which just confirms the known fact that the (non-conservative) axial moment Mx is rotation independent.

4.3. The material spin and the follower moment

We now consider rotations about follower axes, i.e., axes attached to the body (Argyris, 1982), for which
the composition of two successive rotations is given by K2�1 ¼ K1K2. This means that, when performing a

new rotation, its rotation vector must be first rotated through all the previous rotations, i.e.,
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dx ¼ KdX ð50Þ
The spin vector dX is generally known as the material spin. Comparing Eqs. (21) and (50), and using the

fact that K
t ¼ K, we find that

QX ¼ K ð51Þ
Hence, M ¼ KMX and we conclude that the moments work-conjugate to the material spins are follower (or
tangential) moments.

Finally, from Eq. (22) and using the equality T t ¼ KtT (see, e.g., Ibrahimbegovi�cc et al., 1995; Ritto-

Corrêea and Camotim, 2002), we obtain

SX ¼ KtT ¼ T t ð52Þ
This expression does not pass the conservativeness test defined by (38) and, therefore, follower moments

MX are not conservative.

4.4. The cross semi-tangential moment

The cross semi-tangential moment stems from Argyris construction (Argyris et al., 1979a, p. 37), which

is shown in Fig. 2. The initial moment is generated via two orthogonal unit levers, having the directions of
the two unit vectors l and k, and four forces equal to ðM0=2Þl, 
ðM0=2Þl, ðM0=2Þk and 
ðM0=2Þk. Thus, the
initial moment is

Mc ¼ l �M0k

2

 k�M0l

2
¼ M0m ð53Þ

with

m ¼ l � k ð54Þ
Rotating now the levers through h, while keeping the forces constant, we obtain the new moment as

M ¼ ðKlÞ �M0k

2

 ðKkÞ �M0l

2
ð55Þ

This expression can be rewritten as

M ¼ M0

2
ð
~kkKl þ~llKkÞ ð56Þ

or, after introducing Eq. (1) and rearranging terms, as

M ¼ M0

2
ð~llk
 ~kklÞ 
 sin h

2h
M0ð~ll~kk
 ~kk~llÞh þ 1
 cos h

2h2
M0ð~ll~hh2k
 ~kk~hh2lÞ ð57Þ

Fig. 2. Cross semi-tangential moment and unit vector orientation.
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From Eqs. (54) and (4), one finds that

m ¼
~llk
 ~kkl

2
ð58Þ

~mm ¼ ~ll~kk
 ~kk~ll ð59Þ
which allows us to write the expressions inside the first two parentheses of (57) solely in terms of m. As for

the expression inside the last parentheses, it can be transformed, through the use of Eq. (3), into

~ll~hh2k
 ~kk~hh2l ¼ ~llðh � hÞk
 h2~llk
 ~kkðh � hÞl þ h2~kkl ¼ 
~hhðl � kÞh þ ~hhðk� lÞh 
 h2ð~llk
 ~kklÞ
¼ ~hhð
~kk~ll þ ðk � lÞ1þ~ll~kk
 ðk � lÞ1Þh 
 2h2m ¼ ~hh~mmh 
 2h2m ¼ 
~hh2m
 2h2m ð60Þ

Then, Eq. (57) becomes

M ¼ M0m
 sin h
2h

M0 ~mmh 
 1
 cos h

2h2
M0

~hh2m
 1
 cos h

h2
M0h

2m ð61Þ

which, in face of Eq. (53), yields the desired moment rotation law for the cross semi-tangential moment,

M ¼ QcMc ð62Þ

Qc ¼ cos h1þ sin h
2h

~hh 
 1
 cos h

2h2
~hh2 ð63Þ

Matrix Qc was previously obtained by Saleeb et al. (1992), although it was expressed in the alternative form

Qc ¼ 1
2
ðtrðKÞ1
 KtÞ and no derivations details were provided.

The expression for Sc is readily obtained, with the help of Eqs. (32), as

Sc ¼
sin h

h
1þ h cos h 
 sin h

h3
h � h ð64Þ

Now, since it turns out that

sin h
h

� 	0
h

¼ h cos h 
 sin h

h3
ð65Þ

holds, (64) has precisely the form of (41). Hence, we confirm that the cross semi-tangential moment is
conservative and, furthermore, we conclude that

c ¼ sin h
h

h ð66Þ

which, interestingly, is a rotational parameterization considered previously by Pietraszkiewicz and Badur
(1983). In other words, the sine-scaled rotation vector is the rotation measure work-conjugate to the cross

semi-tangential moment (which is the only semi-tangential moment considered by Argyris). As far as we

know, this is an original result.

4.5. The pseudo-rotation and the pseudo-rotational moment

We have just seen how a conservative moment-rotation law can lead to a rotational measure of the form

(17). It is also possible to perform the reverse operation, i.e. to start from a rotational measure and obtain

the corresponding conservative moment-rotation law. In order to achieve this, we only need to define the
function �ss0ðhÞ and to use expressions (38) and (33). To illustrate this procedure, consider the rotational

measure
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q ¼
tan h

2
h
2

h ¼ 2 sin h
ð1þ cos hÞh h ð67Þ

which was termed �parameter pseudo-vector� in (Argyris, 1982). For this reason, the rotation described by q
will be called here pseudo-rotation and its corresponding moment pseudo-rotational moment.

From Eq. (67) and the conservativeness conditions (38), we find that

Sq ¼
2 sin h

ð1þ cos hÞh 1þ
2ðh 
 sin hÞ
ð1þ cos hÞh3

h � h ð68Þ

which, with the help of Eqs. (33), reveals that

Qq ¼
2

1þ cos h
1þ sin h

ð1þ cos hÞh
~hh þ ð1
 cos hÞ

ð1þ cos hÞh2
~hh2 ð69Þ

4.6. The mean semi-tangential moment

Argyris et al. (1979a) did not carry out their work up to the derivation of (63). Having dealt with first-

order approximations of the moment-rotation law, they found instead that

. . . we may understand the semi-tangential moment as a mean value between an axial and a follower

moment. (Argyris et al., 1979a, p. 38)

While this statement is correct in the context of a first-order approximation, for our present purpose––to

investigate the full finite rotation range––it is preferable to assign a different name to this moment. We then

choose the designation mean semi-tangential moment to represent the moment-rotation law

M ¼ 1þ K

2
Mm ð70Þ

This means that

Qm ¼ 1þ K

2
¼ 1þ sin h

2h
~hh þ 1
 cos h

2h2
~hh2 ð71Þ

which only matches (63) up to the linear terms. From Eqs. (71) and (32), we also find that

Sm ¼ sin h
h
1þ h 
 sin h

h3
h � h ð72Þ

an expression which does not pass the conservativeness test (38). Thus, the infinitesimal mean semi-

tangential rotation dm ¼ Sm dh is not a total differential and the mean moment Mm is not conservative.

4.7. Argyris commutative semi-tangential rotations

Argyris et al. (Argyris et al., 1978, 1979a; Argyris, 1982) state that (their) semi-tangential moments are

work-conjugated to the semi-tangential rotations, defined in

After a preceding semi-tangential rotation vp the �rotation vector� vp of a subsequent semi-tangential

rotation is changed to the vectorial mean of the initial �vector� vs and the �vector� vsR which results from
a rotation of vs through vp. (Argyris et al., 1978, p. 428)
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These rotations will be here designated as commutative semi-tangential rotations, because their composition

is commutative (for two arbitrary rotations or for three rotations about orthogonal axes, see Argyris et al.,

1978; Argyris, 1982; Kim et al., 2001). Such definition leads to 2

dx ¼ 1þ K

2
ds ð73Þ

where ds is the axial vector of an infinitesimal commutative semi-tangential rotation. To find the conjugate

pair of ds, we compare Eqs. (73) and (21) to conclude that

Q
t
s ¼ 1þ K

2
ð74Þ

Inverting and transposing this equation yields

Qs ¼ 1þ
sin h

ð1þ cos hÞh
~hh ð75Þ

and, after applying (32), one finds that

Ss ¼
2 sin h

ð1þ cos hÞh 1þ
1

h2
1

�

 2 sin h
ð1þ cos hÞh

�
h � h ð76Þ

Since this expression fails to pass the conservativeness test (38), the commutative semi-tangential momentMs

(defined as the work-conjugate of the commutative semi-tangential rotation) is not conservative. However,

it is interesting to note the similarities between Eqs. (68) and (76), related to the (conservative) pseudo-

rotational moment and the (non-conservative) commutative semi-tangential moment.

4.8. The half semi-tangential moment

Argyris definition of a semi-tangential rotation is not always consistently the same, as can be seen from

the following quote:

. . . in any rotation of a system, the axis of a subsequent semi-tangential rotation is rotated through one

half of the angle through which the system itself is rotated. (Argyris et al., 1979a, p. 42)

We will name the rotation associated to this definition as the half semi-tangential rotation. We then have

dx ¼
ffiffiffiffi
K

p
dh ð77Þ

where
ffiffiffiffi
K

p
is the orthogonal tensor satisfying

K ¼
ffiffiffiffi
K

p ffiffiffiffi
K

p
ð78Þ

and given byffiffiffiffi
K

p
¼ 1þ

sin h
2

h
~hh þ

1
 cos h
2

h2
~hh2 ð79Þ

The corresponding composition rule is K2�1 ¼
ffiffiffiffi
K

p
1K2

ffiffiffiffi
K

p
1. In this case, from Eqs. (21) and (77) and the fact

that
ffiffiffiffi
K

p
is an orthogonal matrix, we conclude that

2 The �rotation vector� referred to in Argyris et al. (1978) was scaled by tanðh=2Þ=h, a distinction which is not important because

Eq. (73) involves an (additional) infinitesimal rotation.
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Qh ¼
ffiffiffiffi
K

p
ð80Þ

By using (32), one then finds

Sh ¼
2 sin h

2

h
1þ 1

h2
1

�


2 sin h

2

h

�
h � h ð81Þ

which, by failing to pass the conservativeness test (38), shows that the half semi-tangential moment is not

conservative.

4.9. Ziegler’s pseudo-tangential moment

Finally, let us address one anisotropic moment-rotation law, namely Ziegler�s conservative pseudo-

tangential moment, 3 shown in Fig. 3. The initial moment is

Mp ¼ M0l � k ¼ M0m ð82Þ
while, after the lever is rotated through h, the new moment is (the identity l ¼ k�m is used)

M ¼ M0ðKlÞ � k ¼ 
M0
~kkKl ¼ 
M0

~kkK~kkm ¼ 
~kkK~kkMp ð83Þ
This means that the moment-rotation law is

Qp ¼ 
~kkK~kk ð84Þ

Since the results derived in Section 3.4 are not applicable to the anisotropic Qp, the work-conjugate rotation
measure is best obtained by writing directly the work expression. The initial and rotated positions of the

two forces, with respect to the center of the lever, are �l=2 and �Kl=2. Then, the work performed by the

two forces is

W ¼ 2
Kl 
 l

2
�M0k ¼ ðK 
 1Þl �M0k ¼ M0

sin h
h

~hhl � k
�

þ 1
 cos h

h2
~hh2l � k

�
ð85Þ

Performing the following manipulations:

~hhl � k ¼ 
~llh � k ¼ h �~llk ¼ h �m ð86Þ

3 Note that several authors designate Ziegler�s pseudo-tangential moment as �quasi-tangential� (Argyris et al., 1978, 1979a; Yang and

Kuo, 1994).

Fig. 3. Pseudo semi-tangential moment and its conjugate.
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~hh2l � k ¼ ~hh2~kkm � k ¼ 
m � ~kk~hh2k ¼ 
~kkðh � h 
 h21Þk �m ¼ 
ðh � kÞ~kkh �mþ h2~kkk �m
¼ 
ðh � kÞ~kkh �m ð87Þ

the work can be expressed as

W ¼ Mp � p ð88Þ
in which p is a rotational measure given by 4

p ¼ sin h
h

h 
 1
 cos h

h2
ðh � kÞ~kkh ð89Þ

It is interesting to consider also the �conjugate� pseudo-tangential moment Mp� (see Fig. 3), which, after a

similar derivation is carried out, can be characterized by

Qp� ¼ 
~llK~ll ð90Þ

p� ¼ sin h
h

h þ 1
 cos h

h2
ðh � kÞ~kkh ð91Þ

At last, observe that, although p and p� are both anisotropic functions of h, their average c ¼ ðpþ p�Þ=2 is

isotropic. The same can be said of moment Mc ¼ ðMp þMp� Þ=2, as shown in Section 4.4.

4.10. Synthesis

Table 1 displays the Sa and Qa tensors corresponding to all the addressed isotropic work-conjugate finite

rotation measures and rotation-dependent moment pairs.
Argyris and co-workers (Argyris et al., 1978, 1979a) have dealt with the cross semi-tangential, mean

semi-tangential, commutative semi-tangential and half semi-tangential concepts (under the common des-

ignation �semi-tangential�) as if they were all equivalent. The explanation for this fact is that, as already

mentioned at the beginning of Section 3.5, these concepts were used in the context of small (incremen-

tal semi-tangential) rotations. Indeed, by looking at the series expansions of the operators Qa shown in

Table 2, it becomes clear that all the above moment definitions are equivalent up to the first order but differ

in the higher-order terms. Furthermore, the pseudo-rotational and rotational moments also have the same

first-order approximation, thus sharing the semi-tangential property.
Fig. 4 depicts, for each investigated isotropic moment-rotation law, how an initial horizontal moment

changes when the body rotates anti-clockwise (2p) about an axis perpendicular to the plane of the page.

Each successive moment vector represents the effect of an additional p=6 rotation. One observes that:

ii(i) For this particular rotation––perpendicular to the initial moment––the cross and mean semi-tangential

moments behave exactly in the same way. The same can be said about the pseudo-rotational and com-

mutative semi-tangential moments. However, no such coincidence would occur for a rotation parallel

to the initial moment vector.
i(ii) The rotational moment becomes infinite for a full 2p rotation. On the other hand, the pseudo-

rotational and commutative semi-tangential moments become infinite for h ¼ p.
(iii) All the semi-tangential moments (all but the axial and follower moments) display very similar initial

behaviors, but differ significantly afterwards.

4 Note that the expression for p is not uniquely determined, since, in face of (88), the addition of a term perpendicular to m does not

affect the value of W . A similar remark can be made about the moment-rotation law Qp.
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Finally, in Table 3 the addressed moment-rotation laws are classified according to the following properties:

Finite––when there is a known moment-rotation law valid in the finite rotation range.

Conservative––when the moment Ma is conservative.

Isotropic––when the moment-rotation law Qa is isotropic.

Isometric––when the moment M ¼ QaMa has constant magnitude. In this case, Qa must be an orthog-

onal tensor.

Mechanistic––when it is possible to identify a (simple) mechanism originating the moment. Obviously,
this property is somewhat fuzzy, as it relies on the capacity to devise such a mechanism.

Semi-tangential––when the moment-rotation law Qa shares the semi-tangential property, i.e. has the

first-order approximation given by Eq. (47).

Cyclic––when, after a full circle rotation (h ¼ 2p), the moment-rotation law yields a moment equal to the

initial one. In this case, the moment-rotation law should feature only the unit vector h=h and trigono-

metric functions of h.

Table 2

Expansion of Qa

Moment Term of order

0 1 2 3 4

Axial 1 – – – –

Rotational 1 1
2
~hh 1

12
~hh2 – h2

720
~hh2

Cross semi-tangential 1 1
2
~hh 
 h2

2
1
 1

4
~hh2 
 h2

12
~hh h4

24
1þ h2

48
~hh2

Mean semi-tangential 1 1
2
~hh 1

4
~hh2 
 h2

12
~hh 
 h2

48
~hh2

Pseudo-rotational 1 1
2
~hh h2

4
1þ 1

4
~hh2 h2

24
~hh h4

24
1þ h2

24
~hh2

Commutative semi-tangential 1 1
2
~hh – h2

24
~hh –

Half semi-tangential 1 1
2
~hh 1

8
~hh2 
 h2

48
~hh 
 h2

384
~hh2

Follower 1 ~hh 1
2
~hh2 
 h2

6
~hh 
 h2

24
~hh2

Table 1

Kinds of isotropic rotations and rotation-dependent moments

Kind a or da Sa Qa

Axial dx sin h
h 1þ 1
cos h

h2
~hh þ h
sin h

h3
h � h 1

Rotational h 1 1þ 1
2
~hh þ 1

h2
1
 ð1þcos hÞh

2 sin h

� �
~hh2

Cross semi-tangential c ¼ sin h
h h sin h

h 1þ h cos h
sin h
h3

h � h cos h1þ sin h
2h

~hh 
 1
cos h
2h2

~hh2

Mean semi-tangential dm sin h
h 1þ h
sin h

h3
h � h 1þ sin h

2h
~hh þ 1
cos h

2h2
~hh2

Pseudo-rotational q ¼ 2 sin h
ð1þcos hÞh h 2 sin h

ð1þcos hÞh 1þ
2ðh
sin hÞ
ð1þcos hÞh3 h � h 2

1þcos h 1þ sin h
ð1þcos hÞh

~hh þ ð1
cos hÞ
ð1þcos hÞh2

~hh2

Commutative semi-tangential ds 2 sin h
ð1þcos hÞh 1þ 1

h2
1
 2 sin h

ð1þcos hÞh

� �
h � h 1þ sin h

ð1þcos hÞh
~hh

Half semi-tangential dh
2 sinh

2

h 1þ 1

h2
1
 2 sinh

2

h

� �
h � h 1þ sinh

2

h
~hh þ 1
cosh

2

h2
~hh2

Follower dX sin h
h 1
 1
cos h

h2
~hh þ h
sin h

h3
h � h 1þ sin h

h
~hh þ 1
cos h

h2
~hh2
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Parallel-invariant––when moment M does not change for rotations h about an axis parallel to the initial
moment Ma. In this case, term 1 in Qa must have an unit coefficient.

Singularity value––the smallest h value for which the moment-rotation law yields an infinite M magni-

tude.

Table 3 also includes Ziegler�s semi-tangential and quasi-tangential moment definitions (Ziegler, 1968),

which were not investigated in detail here. Since there are no known moment-rotation laws for Ziegler�s
quasi- and semi-tangential moments in the finite rotation range, some fields are left unanswered.

Fig. 4. Isotropic rotation-dependent moments. The initial moment is horizontal (to the right). Each successive moment corresponds to

an additional p=6 anti-clockwise rotation perpendicular to the plane of the page.
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5. On the symmetry of the tangent operator

5.1. The tangent operator

We now turn our attention to the second issue raised in the paper outline: In a conservative system with

rotational degrees of freedom, when is the tangent operator symmetric?

Since the system is assumed to be conservative, let us denote its potential energy by P. To keep the

presentation simple, we address the case in which only one 3D rotation is involved. This is sufficient because

the potential non-symmetry of the tangent operator (in a conservative system) stems from the interaction
between the three components within each 3D rotation, and not from the one between different 3D ro-

tations.

Using the principle of stationary potential energy, equilibrium can then be stated as

dP ¼ da � P;a ¼ 0 ð92Þ
The linearization of dP, at the current position, can be written as

dP ¼ dP0 þ DdP0 þ � � � ð93Þ
in which the zero subscript identifies the quantities evaluated at the current position. The linear term can be

expressed as

DdP0 ¼ da � ½P;aa�0 Da ð94Þ
and our task is to discuss the conditions required for the tangent operator ½P;aa�0 to be symmetric.

First of all, it is necessary to know how the rotational degrees of freedom describe the rotation. In

particular, it is important (i) to select an infinitesimal rotation measure da and (ii) to choose either an

additive or a multiplicative update of the orthogonal tensor. 5 Note that the same rotation measure can be

used in both update schemes. For example, in the context of the formulation of geometrically exact beam
finite elements, the rotation vector has been used in either additive (Cardona and Geradin, 1988;

Ibrahimbegovi�cc et al., 1995; Ritto-Corrêea and Camotim, 2002) or multiplicative (Buechter and Ramm,

1992) updates.

Table 3

Properties of several kinds of rotation-dependent moments

Kind Finite Conser-

vative

Isotro-

pic

Isomet-

ric

Mecha-

nistic

Semi-

tangen-

tial

Cyclic Parallel-

invari-

ant

Singu-

larity

value

Axial U – U U U – U U –

Ziegler semi-tangential – U U – U U ? U ?

Ziegler quasi-tangential – U – – U – ? U ?

Ziegler pseudo-tangential U U – – U – U U –

Rotational U U U – – U – U 2p
Cross semi-tangential U U U – U U U – –

Mean semi-tangential U – U – – U U U –

Pseudo-rotational U U U – – U U – p
Commutative semi-tangential U – U – – U U U p
Half semi-tangential U – U U – U – U –

Follower U – U U U – U U –

5 It is also possible to describe rotations with more than three parameters (e.g. the four Euler parameters), subjected to some

constraints. Such constrained updates are not dealt with here.
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5.2. Additive updates

Consider a generic update, in which KO and KN designate the �old� and �new� orthogonal tensors. In an

additive update, we define an orthogonal tensor function KðaÞ, on the basis of which the old and new or-

thogonal tensors are given by

KO ¼ KðaOÞ KN ¼ KðaNÞ ¼ KðaO þ DaÞ ð95Þ
Notice that an additive update obviously depends on the existence of (i) a total rotation measure a and (ii) a

corresponding tensor function KðaÞ. Table 4 displays the expressions of KðaÞ, for the (isotropic and finite)

rotation measures considered in Section 4. The first expression, KðhÞ, is just Rodrigues formula, while the

others can be obtained by expressing h in terms of c or q (see also Argyris, 1982; Pietraszkiewicz and Badur,

1983; Crisfield, 1997). It is well known that a parameterization of K involving only three parameters cannot

be both global and singularity free (Stuelpnagel, 1964) and, for that reason, two ranges are also displayed in

Table 4: (i) the range of application of the formula KðaÞ and (ii) the range in which such formula provides a

1:1 correspondence between a and K. The rotation vector h appears to be the best choice for an additive
update because (i) it has a simple geometric meaning, (ii) it has an unlimited range and a maximal 1:1 range

(see Table 4) and (iii) its work-conjugate moment only becomes infinite for h ¼ 2p (see Table 3). Its only

(minor) drawback is the presence of trigonometric functions which makes the linearization task difficult,

but not impossible as shown by the authors (Ritto-Corrêea and Camotim, 2002).

The use of an additive update in a conservative system implies necessarily a symmetric tangent operator,

since the mere existence of a rotation measure a ensures that the potential energy can be written as PðaÞ
and, therefore,

P;a ¼
X3
i¼1

dPðaÞ
dai

ei P;aa ¼
X3
i¼1

X3
j¼1

d2PðaÞ
daidaj

ei � ej ð96Þ

where ei stands for one of the three unit base vectors of a Cartesian coordinate system. From (96) it be-

comes obvious that the tangent operator P;aa must be symmetric for an additive update.

5.3. Multiplicative updates

In a multiplicative update, an orthogonal tensor function KðDaÞ defines the transformation between the

old and new orthogonal tensors through

KN ¼ KðDaÞKO ð97Þ
Here, the �increment� Da is just the finite counterpart of the infinitesimal da corresponding to the selected

rotation description. After each finite update, KN becomes KO and Da is reset to 0 which implies KðDaÞ ¼ 1
(a null rotation).

Table 4

Tensor functions KðaÞ
KðaÞ Range 1:1 Range

KðhÞ ¼ 1þ sin h
h

~hh þ 1
 cos h

h2
~hh2 h 2 � 
1;þ1½ h 2 � 
 p;þp�

KðqÞ ¼ 1þ 1

1þ q2

4

~qqþ ~qq2

2

� �
q 2 � 
1;þ1½ h 2 � 
 p;þp½
h 2 � 
 p;þp½

KðcÞ ¼ 1þ ~ccþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 c2

p

c2
~cc2 c 2 ½
1;þ1� h 2 
 p

2
;þ p

2

� �
h 2 
 p

2
;þ p

2

� �
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Since K ¼ 1 corresponds to h ¼ 0 and to T ¼ Qa ¼ Sa ¼ 1, all da coincide with the spatial spin dx and,

thus, the multiplicative update (97) is basically independent of the meaning attributed to da. 6 It then might

appear that, in a multiplicative update, the nature of da is irrelevant. However, when evaluating the tangent

operator, two linearizations are performed (one virtual and one incremental). Hence, even if Sa ¼ 1 at the
beginning of each update, its derivative is not necessarily null, which is of paramount importance to the

symmetry of the tangent operator, as shown next.

Since the system is deemed conservative, we can write the potential energy as PðhÞ where h denotes the

rotation vector measured from the current position (this means that the current position corresponds to

h ¼ 0). From Eq. (18), we may then express the variations of h in terms of da and Da,

dh ¼ S
1
a da Dh ¼ S
1

a Da ð98Þ

In addition, let us introduce the following quantities:

P;h ¼
X3
i¼1

dPðhÞ
dhi

ei P;hh ¼
X3
i¼1

X3
j¼1

d2PðhÞ
dhi dhj

ei � ej ð99Þ

To obtain the expressions for P;a and P;aa, we first write dP and DdP in terms of dh and Dh and then make
use of Eqs. (98),

dP ¼ dh � P;h ¼ S
1
a da � P;h ¼ da � S
t

a P;h ð100Þ

DdP ¼ da � DS
t
a ½Dh�P;h þ da � S
t

a P;hhDh ¼ da � NDS
t
a
ðP;hÞDh þ da � S
t

a P;hhDh

¼ da � NDS
t
a
ðP;hÞS
1

a Daþ da � S
t
a P;hhS


1
a Da ð101Þ

which means that

P;a ¼ S
t
a P;h ð102Þ

P;aa ¼ NDS
t
a
ðP;hÞS
1

a þ S
t
a P;hhS


1
a ð103Þ

The tangent operator, evaluated at the current position (h ¼ 0 and, therefore, also Sa ¼ 1), reads then
½P;aa�0 ¼ ½NDS
t

a
ðP;hÞ þ P;hh�h¼0 ð104Þ

While the second term is clearly symmetric, the first one depends on the specific choice of da, namely on the

nature of S
t
a . Observe, however, that the first term becomes null at an equilibrium point where one has

P;h ¼ 0 (see Eq. (92)). This fact is in accordance with a similar finding of Simo and Vu-Quoc (1986),

obtained in the context of Reissner–Simo beam theory.

Assuming now that the chosen da is semi-tangential, the corresponding Sa has no linear term in h (see

Eq. (46)), thus implying that linear terms are also absent from S
t
a . Hence, both DS
t

a ½Dh� and NDS
t
a
ðP;hÞ are

null for h ¼ 0, which means that semi-tangential multiplicative updates lead (in conservative systems) to

symmetric tangent operators. Furthermore, as the evaluation of DdP takes place at h ¼ 0, the higher-order
terms of Sa are irrelevant and, therefore, all semi-tangential multiplicative updates lead to the same tangent

operator.
These findings are in accordance with the known fact that multiplicative updates based on either ds

(Argyris et al., 1978, 1979a) or dh (Buechter and Ramm, 1992) lead to symmetric tangent operators, as both

these rotation measures share the semi-tangential property.

6 Nonetheless, there is some freedom in building the orthogonal tensor function KðDaÞ, as it is only required that its first-order

approximation is KðDaÞ ¼ 1þ fDaDa.
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6. Conclusion

Ziegler (1968) and Argyris et al. (1978) have introduced the concept of rotation-dependent moments, but

with distinct motivations. The former was concerned with conservative applied moments, the latter with the
symmetry of the tangent operator in systems with rotational degrees of freedom and subjected to con-

servative loadings.

Obtaining the moment-rotation law for a given applied moment requires the knowledge of the moment

generation mechanism and is a task that must be performed on a case-to-case basis (as illustrated here for

the cross semi-tangential moment and Ziegler�s pseudo-tangential moment).

For an applied moment to be conservative, its moment-rotation law must satisfy some conditions. A

general necessary condition for conservativeness was identified. Furthermore, for the particular case of

isotropic moment-rotation laws, a straightforward conservativeness test was devised. The application of
such test has shown that the rotational, the pseudo-rotational and the cross semi-tangential moments are

conservative, while all the other moments dealt with in this work are not. In addition, it was found that all

isotropic conservative moments share the same first-order approximation, thus providing the grounds to

establish a new (more general) definition for the semi-tangential property.

In what concerns the rotation description, it is important to distinguish between additive and multi-

plicative updates.

In an additive update, finite rotations must be described by vectors a. For a conservative system, it is then

possible to write the potential energy in terms of the variables a, thereby ensuring that the tangent operator is
symmetric. The rotation vector is arguably the best choice for an additive update because (i) it has a simple

geometric meaning and (ii) its �good-behavior� range is the widest among all the rotation measures.

In a multiplicative update, the variation of the orthogonal tensor is described by a spin-like variable da
(not necessarily a total differential) and the tangent operator is, in general, unsymmetrical. However, the

adoption of a semi-tangential multiplicative update always leads to a symmetric tangent operator.
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Ritto-Corrêea, M., Camotim, D., 2002. On the differentiation of the Rodrigues formula and its significance for the vector-like

parameterization of Reissner–Simo beam theory. International Journal for Numerical Methods in Engineering 55, 1005–1032.

Saleeb, A., Chang, T., Gendy, A., 1992. Effective modelling of spatial buckling of beam assemblages, accounting for warping

constraints and rotation-dependency of moments. International Journal for Numerical Methods in Engineering 33, 469–502.

Simo, J., Vu-Quoc, L., 1986. A three-dimensional finite strain rod model. Part II: Computational aspects. Computer Methods in

Applied Mechanics and Engineering 58, 79–116.

Stuelpnagel, J., 1964. On the parameterization of the three-dimensional rotation group. SIAM Review 6, 422–430.

Teh, L.H., Clarke, M.J., 1997. New definition of conservative internal moments in space frames. Journal of Engineering Mechanics

ASCE 123 (2), 97–106.

Teh, L.H., Clarke, M.J., 1999. Symmetry of tangent stiffness matrices of 3D elastic frame. Journal of Engineering Mechanics ASCE

125 (2), 248–251.

Wang, C.-C., 1970. A new representation theorem for isotropic functions: an answer to Professor G.F. Smith�s criticism of my papers

on representations for isotropic functions. Part 2. Vector-valued isotropic functions, symmetric tensor-valued isotropic functions

and skew-symmetric tensor-valued isotropic functions. Archive for Rational Mechanics and Analysis 36, 166–197.

Yang, Y.-B., Kuo, S.-R., 1994. Theory and Analysis of Nonlinear Framed Structures. Prentice-Hall, New York.

Yang, Y.-B., McGuire, W., 1986a. Joint rotation and geometric nonlinear analysis. Journal of Structural Engineering ASCE 112 (4),

879–905.

Yang, Y.-B., McGuire, W., 1986b. Stiffness matrix for geometric nonlinear analysis. Journal of Structural Engineering ASCE 112 (4),

853–877.

Ziegler, H., 1968. Principles of Structural Stability, second ed. Blaisdell, Waltan, MA.
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